N. V. Beselovskaya and Yu. E. Sklyar

UDC 547.58+633.88+543.5

Tadzhiferin (I) and tadzhikorin (II) have been isolated previously from the fruit of Ferula tadshikorum M. Pimen [1].

An acetone extract of the roots of F. tadshikorum yielded by column chromatography on silica gel L 40/100 in petroleum ether—ethyl acetate not only umbelliferone (mp 230-232°C), tadzhiferin (I) ($C_2 H_{30} O_4$, mp 66-70°C), and tadzhikorin ($C_2 G_{32} O_6$, liquid identified on the basis of its IR and PMR spectra), but also a terpenoid coumarin $C_2 H_{30} O_5$, M^+ 398, mp 64-66°C. The IR spectrum of the substance had a broad hydroxyl band at 3300 cm⁻¹. The PMR spectrum (Varian, HA-100D, CDCl₃, 0 - TMS) showed the signals of the following functional groups (δ , ppm): 4 CH_3 —C=C (1.61, s, 1.81, s, 2 H, 1.69, s, 6 H); 2 CH_2 —C=C (2.05-2.35, m, 4 H); 2 H_3 = H_3

On the basis of these results, the substance can be ascribed the structure of deacetyltadzhikorin (IV), which has been obtained previously [1] by the hydrolysis of (II).

A comparison of the IR and PMR spectra of this substance isolated and (IV) showed their complete identity. The acetylation of the compound isolated with $(CH_3CO)_2O$ in pyridine gave the diacetate (V), $C_{28}H_{34}O_7$, identical according to IR and PMR spectroscopy with tadzhikorin [1].

RO
$$H_3C$$
 CH_2 CH_3 OR H_3C CH_3 OR $IV. R = H$ $V. R = COCH_3$

LITERATURE CITED

- 1. M. E. Perel'son, V. V. Vandyshev, Yu. E. Sklyar, K. Vezhkovska-Renke, N. V. Veselov-skaya, and M. G. Pimenov, Khim. Prir. Soedin., 593 (1976).
- 2. I. A. Kir'yanova, Yu. E. Sklyar, M. G. Pimenov, and Yu. V. Baranova, Khim. Prir. Soedin., 573 (1979).

All-Union Scientific-Research Institute of Medicinal Plants, Moscow. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 386-387, May-June, 1984. Original article submitted January 11, 1984.